

1-Fiber Detachable DVI module, DVFX-110

DATA SHEET

Contents

- Description
- ♦ Features
- **♦** Applications
- **♦ Technical Specifications**
- **♦** Functions
- Drawing
- **♦** Fiber Connection
- ♦ DVI Pin Description

OPTICIS HQ

Opticis Co., Ltd. 3F, 305, Sanseong-daero, Seongnam-si, Gyeonggi-do, 13354 South Korea Tel: +82 (31) 719-8033

Fax: +82 (31) 719-8032 www.opticis.com tosales@opticis.com

1-Fiber Detachable DVI module, DVFX-110

Description

DVFX-110 is capable of driving uncompressed WUXGA (1920x1200) 60Hz DVI signal up to 1,500m (4,920ft) over one (1) single-mode or 500m (1,640ft) over multi-mode fiber.

The EDID (Extended Display Identification Data) in a display can be read and restored by just plugging once transmitter to the display. This Self-EDID programming feature makes the installation of DVFX-110-TR more easy and flexile at any variable resolution display systems.

The key features of DVFX-110-TR is, by using an optical splitter (OPS-116S), one (1) signal from transmitter can be copied up to sixteen (16) times and it gives you a cost effective and space saving installation for various application.

For your convenience, UXGA EDID would have been done before shipment as a default. The modules are constituted of three parts as follows;

- One (1) transmitter converting electrical to optical signals, model name: DVFX-110-T
- One (1) receiver converting optical to electrical signals, model name: DVFX-110-R
- Two (2) AC Adaptors to 110V-240V with DC 5V 2A outlet

Features

- ◆ Extends all VESA resolution up to WUXGA (1920x1200) at 60Hz DVI data up to 1,500m (4,920ft) over one (1) single-mode or 500 meters (1,640ft) over one (1) multi-mode fiber
- Detachable feature with a simplex SC connector for each module
- Offers self-EDID programming feature, detecting from a display and restoring to an EEPROM in the transmitter just by plugging to the display without any physical DDC connection
- The modules are compact enough to directly plug to graphic sources and displays by adopting DVIplugs
- ♦ Includes two (2) +5V DC power adapters for the transmitter and receiver
- Complies with Class 1 Laser Eye Safety in compliance with FDA/CDRH.
- ♦ Certifications: CE / FCC, Class 1 Laser Eye Safety
- Data security with negligible RFI/EMI emissions and loss of video quality due to no copper conductor present

Applications

- ♦ Digital FPDs, PDPs and projectors for medical appliances, aero, traffic control, factory, and bank
- ♦ Digital FPDs and projectors in conference room and auditorium
- ♦ Kiosk with digital FPDs showing full motion graphic displays from remote systems
- PDP displays for information in public sites
- ♦ LED signboards in streets and in stadiums

Technical Specifications

- General Specifications

	Parameter	Specifications		
Componente	Laser Diodes in Tx Module	1310nm/1550nm 2ch transmitter with FP-LD		
Components	Photo Diodes in Rx Module	1310nm/1550nm 2ch receiver with GaAs PIN-PD		
	Input and Output Signals	TMDS Level (complying with DVI1.0)		
Electrical	Data Transfer Rate (Graphic Data)	Max. 1.65Gbps		
Electrical	Total Jitter at the end of Rx output	Max. 309 ps		
	Skew inter-channels	Max. 6ns		
Optical Link Power Budget		Min 13.9dB		
Mechanical	Module dimension (WDH)	39 x 68 x 14.6mm		
	Optical Connector	Simplex SC connectors		
Connect	Electric Connector Type from Systems and to Displays	24 pin DVI-D plug		
	Recommended Fiber	9um-single-mode Glass Fiber		

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
Supply Voltage	Vcc	-	+ 7.0	V
Operating Temperature	T _{op}	0	50	°C
Storage Temperature	Ts	- 30	+ 70	°C
Storage Relative Humidity	Hs	10	95	%RH

Operating Conditions <u>Transmitter module (E-to-O converter): DVFX-110-TX</u>

	Parameter	Symbol	Minimum	Typical	Maximum	Units
	Supply Voltage	Vcc	4.5	5.0	5.5	V
ည် ည	Supply Current	Ітсс	650	680	710	mA
ı₽γ	Power Dissipation	P _{TX}	2.925	3.400	3.905	W
ver ply	Power Supply Rejection (Note1)	PSR		50		mV_{p-p}

	Data Output Load R _{LD}			50		Ω
	Graphic Supply Voltage (Note2)	GVcc	+ 3.1	+ 3.3	+ 3.5	V
TMDS	Single-Ended High Level Input Voltage	GV _{IH}	GV _{CC} - 0.01	GVcc	GV _{CC} + 0.01	V
Ō	Single-Ended Low Level Input Voltage	GV _{IL}	GV _{CC} - 0.6	ı	GV _{CC} - 0.4	V
	Single-Ended Input Swing Voltage	GVISWING	0.4	-	0.6	V
	Output Optical Power (Note 3)	Po	-6.0		0	dBm
	Wavelength	λ	1310	-	1550	nm
~ ob	Spectral width in RMS	Δλ			2	nm
Optical Link (Note3)	Relative Intensity of Noise (Note4)	RIN		-20		dB/Hz
[∞] ¹ =	Extinction Ratio	Ext	4			dB
^	Rising/Falling Time	T _{rise} /T _{fall}			260	ps
	Jitter in p-p value (Note5)	T _{jitter}			260	ps

- Note1. Tested with a $50mV_{p-p}$ sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V_{CC} supply with the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced.
- Note2. Graphic Supply Voltage is regulated reference voltage for signal processing in modules
- Note3. Measure each optical wavelength at the end of 2 meter 50/125um MMGOF
- Note4. Measure in 1GHz of frequency bandwidth
- Note5. Use PPG (Pulse Pattern Generator) source with jitter 50ps

Receiver module (O-to-E converter): DVFX-110-RX

	Parameter	Symbol	Minimum	Typical	Maximum	Units
	Supply Voltage	Vcc	4.5	5.0	5.5	V
S δ	Supply Current	I _{RCC}	530	560	590	mA
Power Supply	Power Dissipation	P _{RX}	2.385	2.8	3.245	W
er Ny	Power Supply Rejection (Note6)	PSR		50		mV_{p-p}
	Data Input Load	R _{LD}		50		Ω
TMDS	Graphic Supply Voltage (Note7)	GVcc	+ 3.1	+ 3.3	+ 3.5	V
	Single-Ended Output Swing Voltage (Note8)	GV _{ISWING}	0.2	-	0.4	V
0	Receiving Optical Power	Po	-21		0	dBm
Optical Link (Note9)	Receiving Wavelength	λ	1260 1480	1310 1550	1360 1600	nm
1 =	Signal_Detect Good	SDg			-31	dBm
ᆽ	Signal_Detect Fail	SDf	-21			dBm
(Not	Link Power Budget	P _{bgt}	13.9			dB
e9)	Total Jitter (note 10)	TR _{jitter}			309	ps

- Note6. Tested with a $50 \text{mV}_{p,p}$ sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V_{CC} supply with the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced.
- Note7. Graphic Supply Voltage is regulated reference voltage for signal processing in modules
- Note8. TMDS outputs are coupled in AC
- Note9. Measure signals at the end of 2 meter 50/125um MMGOF
- Note10. It is measured as total jitters including Tx and Rx modules under maximum extension, 500 meters with UXGA 60Hz.

Recommended Specifications of Fiber-Optic Cables

Parameters	Conditions	Specifications
Fiber Type		9μm Single-mode Graded Index Glass Fiber
Modal Bandwidth	λ = 1310nm λ = 1550nm	Min. 400 MHz km
Fiber Cable Attenuation	λ = 1310nm λ = 1550nm	Max. 3.5dB/km
Extension Distance		10 – 1650ft (500 meter)
No. of Ferrules	Simplex SC*	1 ferrule
Skew		Max. 0.4ns
Insertion Attenuation		Max. 0.5dB
Total Optical Attenuation	In 330 ft (100 meter) extension	Max. 1.5dB

Note*: Some plastic couplers to clamp two LC connectors could not fit in.

Functions

Self-EDID Function

The EDID in a display can be read and restored by just plugging it to the display. This self-EDID programming feature makes the installation of DVFX-110 more easy and flexile at any variable resolution display systems.

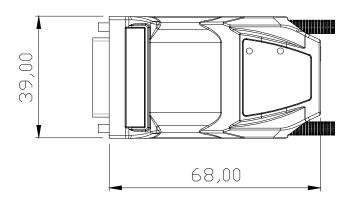
- Power Protection Circuit Mode in Transmitter Module

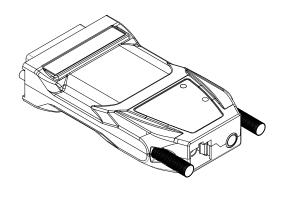
The transmitter (Tx) module of DVFX-110-TR is designed for power protection circuit from conflict of power supply between the external AC/DC power adapter and your DVI source by #14 pin.

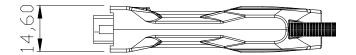
We strongly recommend to use external AC/DC adapter for Transmitter (Tx) for stable power supplying. In case of Receiver (Rx), power should be supplied by AC/DC adapter due to no internal power supplying from the displays.

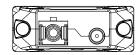
Signal Detect Mode in Receiver Module

It offers squelch function blocking output signals when optical input power is lower than as specified in a certain case, for instance, loosing optical connectors.

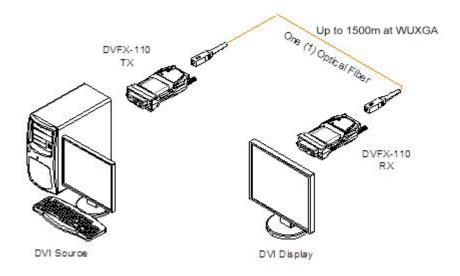

Signal Splitting Function


One (1) signal from transmitter can be copied up to sixteen (16) times by using an optical splitter (OPS-116S) and it gives you a cost effective and space saving installation for various application.




Drawing

Dimension [mm]



Note: The transmitter, DVFX-110-T and the receiver, DVFX-110-R have the same mechanical dimensions.

Fiber Connection

The diagram shows the connection of transmitter (Tx; plug in PCs) and receiver (Rx; plug in displays) modules by using one (1) SC patch cords fiber.

DVI Pin Description

Pin	Symbol	Functional Description	
1	CH2-	TMDS Data Signal Channel 2 Negative	
2	CH2+	TMDS Data Signal Channel 2 Positive	
3	GND	ΓMDS Data Signal Channel 2/4 Shield	
4	CH4-	TMDS Data Signal Channel 4 Negative	
5	CH4+	TMDS Data Signal Channel 4 Positive	
6	DDC Clock	DDC Clock line for DDC2B communication	
7	DDC Data	DDC Data line for DDC2B communication	
8	N.C.		
9	CH1-	TMDS Data Signal Channel 1 Negative	
10	CH1+	TMDS Data Signal Channel 1 Positive	
11	GND	TMDS Data Signal Channel 1/3 Shield	
12	CH3-	TMDS Data Signal Channel 3 Negative	
13	CH3+ TMDS Data Signal Channel 3 Positive		
14	5 V	Main Power Input for Transmitter from Host (Note11)	
14 5 V		5 V Output for Receiver to monitor	
15	GND	Ground	
16	Hot plug Detect	Signal is driven by monitor to enable the system to identify the presence of a monitor	
17	CH0-	TMDS Data Signal Channel 0 Negative	
18	CH0+	TMDS Data Signal Channel 0 Positive	
19	GND	TMDS Data Signal Channel 0/5 Shield	
20	CH5-	TMDS Data Signal Channel 5 Negative	
21	CH5+	TMDS Data Signal Channel 5 Positive	
22	GND	TMDS Clock Signal Shield	
23	CLK+	TMDS Clock Channel Positive	
24	CLK-	TMDS Clock Channel Negative	

Note11) The AC-to-DC adapter for transmitter is option for Desk Top PC user.

But Note PC user has to use the AC-to-DC adapter because the power of Note PC is not enough to drive DVFX-110 transmitter.

Revision History

Version	date	History	
1.2	2011-12-30	OSD Function updated.	
1.3	2016-01-15	Audio and interlaced signal updated.	
1.4	2017-03-09	Maximum distance changed. (1,000m -> 1,500m)	
1.5	2018-07-31	Change in contents	
1.6	2021-02-24	Change in company's address	